Simulation based design of an electrified monorail system (EMS) with high throughput and short delivery times

Tecnomatix 2016 Plant Simulation Worldwide User Conference
June 20 - 22, 2016, Development Center, Stuttgart - Weilimdorf, Germany

Dr. Monika Schneider, Conveyor Systems, Eisenmann Anlagenbau GmbH & Co. KG

www.eisenmann.com
© Eisenmann

2016 © Eisenmann Anlagenbau GmbH & Co. KG
All rights reserved. All text, images, photos and graphics are subject to copyright and other intellectual property laws. Content may only be used with the express permission of Eisenmann Anlagenbau GmbH & Co. KG. All content, including, without limitation, specifications, descriptions, are subject to error and change, in particular with regard to ongoing development of our products in line with technological progress. Changes to content will be proactively communicated. Technical specifications may vary from country to country.
About Eisenmann

Eisenmann is a leading international systems supplier for finishing technology, material flow automation, and for environmental and thermal process technology.

- Plant design and construction experts
- Highly flexible systems integrator
- Market and technology leader in components as well as in complete systems
- Service provider with a broad range of service products
- Family-owned company with a very sound financial foundation and sustainable economic management
- Innovative high-tech company due to a wide range of R&D activities as well as testing facilities & laboratories
Eisenmann Conveyor Systems – Overview

COMPLETE SOLUTIONS FOR INTRALOGISTICS
- Turn-key logistics centers with tailored solutions for storage technology and material flow automation

ELECTRIFIED MONORAIL SYSTEMS
- Highly intelligent, robust, flexible, high-performance and energy-efficient material flow solutions for floor-free transportation

RGV CONVEYING SYSTEMS
- Clever solutions with the technological advantages of the electrified monorail system for compact areas and low design heights

LOGIMOVER
- Driverless transport systems for the automation of pallet transport

Conveyor Systems – Complete Solutions for Intralogistics

Solutions for complex logistical tasks:
- Experienced project planning, planning and simulation for clever solutions and optimal concepts
- Independent selection of the ideal storage and picking technology to meet specific demands
- Holistic expertise: IT, control technology, mechanics and steel construction from a single source
Conveyor Systems – Electrified Monorail Systems

High-performance systems for demanding transport tasks:

- Linking of different areas
- Picking system
- Workpiece carrier on assembly lines

Conveyor Systems - Simulation

- Use of Plant Simulation since over 20 years supporting the design of logistic systems
- Simulation of rail guided systems (Electrified Monorail system, Electrified floor track system, Inverted electrified monorail system)
 - Static calculation of trolley number is not reliable
 - The detection of bottlenecks is often based on a combination of several layout properties (switches, exchange stations, curves, fire gates)
 - Animation of pallet flow as an easy way to explain the installation
- Object Libraries and semi-automatic model generation

Reliable results and animation
Design project – Logistic centre

Logistic center with High Bay Warehouse (HBW) and pallet conveyor system

Main material flow
- Production and receiving to HBW
- HBW to picking and back
- HBW to shipping

Challenges during design phase
- Increasing high performance from the HBW up to 430 pallets / hour
- Sequencing of 390 pallets to the shipping area
- Short delivery times to the shipping area of less than 35 minutes

Design project step 1

Layout and material flow of request for quotation

Layout of HBW zone:
- Outbound flow of HBW 320 pallets / hour
- Inbound flow to HBW 280 pallets / hour
- Fire protection wall

First question to simulation: Is the monorail layout capable to handle the material flow?

Input data:
- Layout (no requested file-format)
 - Generate a bitmap with the standard scale 1 m = 10 pixel
- Transport data
 - Generate a transportation matrix for the rail guided system of the peak hour (From / To)
Plant Simulation: Semi-automatic model generation

- Manual setup of track system
 - independent of layout-file format (even *.pdf is possible)
 - effort

- Semi-automatic process of further model generation
 - Calculate shortest way to destination using Floyd-Warshall Algorithm
 - Setup the curve speed based on the segment table
 - Detect track switches and insert switch control
 - Generate exchange stations and assign to the tracks by drag- and drop
 - Flow counters for areas of exchange stations
 - Destination list (assignment destination name to track)
 - Empty trolley guiding

Demonstration

Plant Simulation: Evaluation of simulation run

- Analysis of hourly flow => comparing to the transportation matrix
- Analysis of queues at the inbound stations
- Detection of bottlenecks
 - Animation (e.g. permanent congestions in front of HBW front zone)
 - Analysis of capacity utilisation of fire doors or track switches (e.g. occupation of 95% signals bottleneck)
 - Factor of one trolley (waiting in front of switch or at the exchange station) blocking other trolleys
Design project step 1 - Results

- HBW front zone is bottleneck
- Redesign of rail track and conveyors
 - Increase of exchange stations
 - Fire doors only on the rail
- New version of the simulation model
 - HBW front zone can handle the material flow

Design Project Step 2 - Cost reduction

Next Step: budget reduction required

- Goal: Save second floor level of pallet conveyors
- New material flow figures for the monorail system of 430 pallets from the HBW / h
- Redesign supported by the simulation
 - Support of mechanical engineering: Describe the required dynamic parameters (speed / acceleration) of the monorail trolley
 - New layout of the HBW front zone
 - New layout of the sortation buffer to shipping to avoid double flow of the pallets
Design Project Step 3 - Sequence and delivery times to shipping

Next step: details of the order structure

- **Goal:** Confirm order sequence and delivery times
- **Project specific implementation**
 - Pallet conveyor layout
 - Order management
 - Control strategies (HBW, empty trolley disposition, transfer car)
 - Statistics
- **Result:** The performance requirements can be met.

Conclusion

- Animation and presentation of results in an early project phase
- Simulation creates confidence to the customer
- Design reliability in the quotation process
- Scenarios can be analysed in an early phase
- Simulation model can be extended to meet the specific project requirements
Any questions?

Your contact

Dr. Monika Schneider

Expert Intralogistics Simulation
Conveyor Systems

Phone: +49 7031 78-2957
E-mail: monika.schneider@eisenmann.com
Daimlerstr. 5, 71088 Holzgerlingen, Germany