Simulation of Thermoset Polymer Composite Curing

James Gilbert

Kristof Vanclooster, Stepan Lomov
Outline

• Motivation

• Numerical simulation technique overview
 o Thermal simulation models and parameters
 o Mechanical simulation models and parameters

• Assessment : Comparison to literature

• Assessment : Fast-curing resin
Production & Challenges

Autoclave
- Pressure (1-10 bars)
- Vacuum bag
- Prepreg
- Mold

(Vacuum assisted) resin infusion
- Atmospheric pressure
- Resin
- Dry fabric
- Lower mold
- Vacuum

Spring-in
- Change of corner angle

Warpage
- Deformation of flat plane

[1] Reference source 1
[2] Reference source 2
Mitigation of challenges

- Mould Adaptation
- Production process (temperature profile)
- Mould-tool interface (friction)

How to evaluate methods
- Trial and error – large cost/time
- Numerical simulations
Numerical Models
Simulation Procedure

Thermal Properties Simulations Conditions

Thermal Solver

Degree of Cure Glass Transition Temperature

Mechanical Properties Simulation Conditions

Mechanical Solver

Residual Stresses Deformations
Glass Transition Temperature (T_g)

- Rubbery to glassy transition
- 2 material parameters T_{g0}, $T_{g\infty}$
- 1 curvature parameter λ

\[
T_g(\alpha) = T_{g0} + \frac{\lambda \alpha \cdot (T_{g\infty} - T_{g0})}{1 - \alpha(1 - \lambda)}
\]

DiBenedetto[3]
Degree of Cure (α)

$$\alpha(t) = \frac{1}{H_{\text{tot}}} \int_0^t \frac{dH}{dt} dt$$

Lee et al. \cite{7} (Default Samcef model)

$$\frac{d\alpha}{dt} = k_1 (1 - \alpha)^{n_1} + k_2 \cdot \alpha^m (1 - \alpha)^{n_2}$$

Autocatalytic \cite{5}

N-order \cite{5}
Reaction Limiting Mechanisms

T < \(T_g \) – reaction slows (glassy state)

- Nothing
- Maximum Degree of Cure \(^{[8]}\)
- Glass Transition Temperature \(^{[9]}\)

\[
\frac{1}{T_{g\infty}} \quad \frac{1}{T_{g0}}
\]

Cure Temperature

\(T_g \)

Original Rate – \(k \)

Modified Rate – \(k' \)

Fractional Conversion

\(\alpha_{\text{MAX}} \)

Time (min)

Reaction Rate (s)

Temperature (°C)

KU LEUVEN
Limiting Mechanisms: T_g

The diagram illustrates the relationship between reaction rate and temperature over time. The cure temperature (T_g) is marked as a critical point where the reaction rate changes significantly.

- **Cure Temperature**: A line representing the cure temperature (T_g) is observed throughout the process.
- **Original Rate**: A curve indicating the reaction rate without modification.
- **Modified Rate**: Another curve showing the reaction rate after modification, showing a notable change after T_g.

The x-axis represents time in minutes, and the y-axis represents reaction rate and temperature in degrees Celsius. The diagram highlights the transition points and the impact of T_g on the reaction rate.
Custom Cure Model

- Epilog definition
- Variations:
 - Cure model
 - Reaction limiting mechanism

\[
\frac{d\alpha}{dt} = k_1(\alpha_{max} - \alpha)^{n_1} + k_2\alpha^m(\alpha_{max} - \alpha)^{n_2}
\]

- Notes:
 - Limited line length
 - Imaginary numbers
 - Brackets
RTM-6 Models and Parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Cure Model</th>
<th>Vitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balvers #1</td>
<td>Kamal & Sourour</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>Karkan #1</td>
<td>Lee et al.</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>Brauner</td>
<td>Kamal & Sourour</td>
<td>(k_D = \exp \left(\frac{-b}{T} \right))</td>
</tr>
<tr>
<td>4</td>
<td>Balvers #2</td>
<td>Kamal & Sourour</td>
<td>(k_D = A_D \exp \left(\frac{-E_D}{RT} \right) \exp \left(\frac{-b}{T} \right))</td>
</tr>
<tr>
<td>5</td>
<td>Karkan #2</td>
<td>Kamal & Sourour</td>
<td>(k_D = A_D \exp \left(\frac{-E_D}{RT} \right) \exp \left(\frac{-b}{T} \right))</td>
</tr>
<tr>
<td>6</td>
<td>Navabpour #1</td>
<td>Kamal & Sourour</td>
<td>(\alpha_{max})</td>
</tr>
<tr>
<td>7</td>
<td>Navabpour #2</td>
<td>Lee et al.</td>
<td>(\alpha_{max} = \frac{n_2}{m_2})</td>
</tr>
<tr>
<td></td>
<td>El Sawi</td>
<td>Lee et al.</td>
<td>(\alpha_{max} = f(T, T_{g0}, T_{g\infty}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Balvers #1</th>
<th>Karkan #1</th>
<th>Brauner</th>
<th>Balvers #2</th>
<th>Karkan #2</th>
<th>Navabpour #1</th>
<th>Navabpour #2</th>
<th>El Sawi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{tot}) (kJ/kg)</td>
<td>429</td>
<td>436</td>
<td>419</td>
<td>455</td>
<td>436</td>
<td>450</td>
<td>450</td>
<td>430</td>
</tr>
<tr>
<td>(A_1) (s(^{-1}))</td>
<td>44.62</td>
<td>57.8</td>
<td>4.5 \times 10^6</td>
<td>148.75</td>
<td>75.0</td>
<td>27.612</td>
<td>39.300</td>
<td>34.00</td>
</tr>
<tr>
<td>(A_2) (s(^{-1}))</td>
<td>17.65</td>
<td>26.0</td>
<td>1.3 \times 10^6</td>
<td>10.438</td>
<td>21.60</td>
<td>15.369</td>
<td>51.334</td>
<td>1.80</td>
</tr>
<tr>
<td>(E_1) (kJ/mol)</td>
<td>74.41</td>
<td>74.69</td>
<td>74.69</td>
<td>76.825</td>
<td>74.69</td>
<td>72.61</td>
<td>74.00</td>
<td>47.00</td>
</tr>
<tr>
<td>(E_2) (kJ/mol)</td>
<td>58.16</td>
<td>58.37</td>
<td>58.37</td>
<td>55.329</td>
<td>58.37</td>
<td>57.70</td>
<td>62.23</td>
<td>47.00</td>
</tr>
<tr>
<td>(n_1) (-)</td>
<td>0.449</td>
<td>1.786</td>
<td>1.114</td>
<td>1.15</td>
<td>1.3618</td>
<td>T dependent</td>
<td>T dependent</td>
<td>T dependent</td>
</tr>
<tr>
<td>(n_2) (-)</td>
<td>1.171</td>
<td>1.217</td>
<td>1.20</td>
<td>1.229</td>
<td>1.216</td>
<td>1.275</td>
<td>1.128</td>
<td>T dependent</td>
</tr>
<tr>
<td>(b) (-)</td>
<td>0.05</td>
<td>0.2267</td>
<td>0.26</td>
<td>1.42 \times 10^28</td>
<td>6.5 \times 10^{18}</td>
<td>21.624</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>(A_D) (s(^{-1}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_D) (kJ/mol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda) (-)</td>
<td>0.383</td>
<td>0.435</td>
<td>0.50</td>
<td>0.543</td>
<td>0.435</td>
<td></td>
<td></td>
<td>0.44</td>
</tr>
<tr>
<td>(T_{g0}) (°C)</td>
<td>-14.58</td>
<td>-11</td>
<td>-15</td>
<td>-13.09</td>
<td>-11</td>
<td></td>
<td></td>
<td>-27</td>
</tr>
<tr>
<td>(T_{g\infty}) (°C)</td>
<td>220.51</td>
<td>206</td>
<td>170</td>
<td>217.88</td>
<td>206</td>
<td></td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>(D) (°C)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F) (°C)</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literature Model Comparison

RTM-6 cured at 160°C

Virtual DSC

Degree of Cure

Time (min)
Cure-induced deformations

- Develop during cure
- Sources
 - Mismatch in CTE (mould/fibre/matrix)
 - Cure shrinkage of matrix
- Matrix evolving
 - Modulus change
 - Relaxation
Matrix Modulus

Visco-elastic effects: Relaxation
Preliminary Matrix Curing Simulation

Virtual DSC

Temperature (°C) vs. Time (min)

- Heating
- Chemical Cure
- Cooling

Strain

T_g ∝ Degree of Cure

KU LEUVEN
Assessment:
Comparison to literature
Assessment: Comparison to literature

- Experiment by Albert & Fernlund [17]
- 8 factors tested in fractional factorial

- Factors tested 1 at a time
- Measuring spring-in on final part

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part shape</td>
<td>C, L</td>
</tr>
<tr>
<td>Layup</td>
<td>Unidirectional $[0]n$, Quasi-isotropic $[0, +45, -45, 90]{ns}$</td>
</tr>
<tr>
<td>Part thickness</td>
<td>8 plies, 16 plies</td>
</tr>
<tr>
<td>Part angle</td>
<td>90°, 45°</td>
</tr>
<tr>
<td>Arm length</td>
<td>Long, Short</td>
</tr>
<tr>
<td>Friction</td>
<td>High 0.3, Low 0</td>
</tr>
<tr>
<td>Mould material</td>
<td>Steel, Aluminum</td>
</tr>
<tr>
<td>Cure cycle</td>
<td>1-hold, 2-hold</td>
</tr>
</tbody>
</table>

![Diagram of cure cycle](image)

Cure Cycle

- Temperature (°C)
- Time (min)
- Gel Point
- 1-hold
- 2-hold
Spring-in angle analysis

- Spring-in
- Secant
- Tangent
- Original shape
- Warpage
- Corner
- Total spring-in
Simulation results

![Simulation Results Graph]

- **Spring-in Angle (°)**

 - Reference
 - L-shape
 - Quasi-isotropic
 - 45° Angle
 - 16 plies
 - Short Arms
 - 2-hold cure
 - Low Friction
 - Aluminium Mould

- **Simulation Results**
 - Corner
 - Warpage
Results: comparison to literature

Layup

<table>
<thead>
<tr>
<th></th>
<th>Literature</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD</td>
<td>1.0±0.5</td>
<td>2.5±0.5</td>
</tr>
<tr>
<td>QI</td>
<td>1.5±0.5</td>
<td>2.0±0.5</td>
</tr>
</tbody>
</table>

Part Angle

<table>
<thead>
<tr>
<th></th>
<th>Literature</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>1.5±0.5</td>
<td>2.0±0.5</td>
</tr>
<tr>
<td>45°</td>
<td>1.0±0.5</td>
<td>1.5±0.5</td>
</tr>
</tbody>
</table>
Assessment: Fast-curing resin
Assessment: Fast-curing resin
Identification of Cure Parameters

- Fast curing (automotive) resin
 - SR 8500/SZ 8525 from Sicomin
- Using Differential Scanning Calorimetry
 - Dynamic, Isothermal, Interrupted
Glass Transition Temperature

$T_{g0} - Change over experiments$

$T_{g0}: -12.37 \degree C$
$T_{g\infty}: 124.2 \degree C$
$\lambda: 0.3367$
$\alpha_0: 0.236$

$T_g(\alpha) = T_{g0} + \frac{\lambda \alpha \cdot (T_{g\infty} - T_{g0})}{1 - \alpha (1 - \lambda)}$
Thermal Parameter Fitting

- Minimising residuals in Matlab
 - Explicitly calculate cure evolution

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>T_{g0}</th>
<th>$T_{g\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>0.056</td>
<td>-20.8</td>
<td>110.9</td>
</tr>
<tr>
<td>Isothermal</td>
<td>0.488</td>
<td>-15.8</td>
<td>89.2</td>
</tr>
</tbody>
</table>
Thermal Parameters

• Minimising residuals in Matlab
 ○ Explicitly calculate cure evolution

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>T_{g0}</th>
<th>$T_{g\infty}$</th>
<th>A_1</th>
<th>A_2</th>
<th>E_1</th>
<th>E_2</th>
<th>n_1</th>
<th>m</th>
<th>n_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>0.056</td>
<td>-20.8</td>
<td>110.9</td>
<td>0.001</td>
<td>157</td>
<td>22.5</td>
<td>47.3</td>
<td>0.60</td>
<td>2.74</td>
<td>2.36</td>
</tr>
<tr>
<td>Isothermal</td>
<td>0.488</td>
<td>-15.8</td>
<td>89.2</td>
<td>80.5</td>
<td>175</td>
<td>52.3</td>
<td>72.7</td>
<td>1.04</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Assessment: Fast-curing resin

- Pressure
- Heat transfer to the environment
- Water flow
- Contact condition

Temperature, °C

Exotherm - curing

- Temperature
- Degree of Cure

Temperature distribution during heating
Results

Produced Part

Simulation Results

Opening Angle, °

Part length, 0 = wide end, mm

Wide End Transition Zone Narrow End
Trends in the results

Change in the Opening Angle, °

Spring-out

Spring-in

Produced Parts
Simulated Part

Wide End Transition Zone Narrow End
Conclusions & Future Work

• Parameters and model variations are numerous and show similar cure evolution for RTM-6

• Predicted impact of various manufacturing and design parameters and compared to experimental results

• Parameter identification for the cure-model parameters of a fast-curing resin
 ∘ Revisions to the testing procedure should be investigated

• Predicted spring-in on an industrially relevant part followed similar trends to experimental results
 ∘ Additional effects should be investigated (relaxation, mechanical parameters)
Relaxation

- Stiffness reduction over time after a stimulus

\[E(\xi) = E_0 \left[1 - \sum_{m=1}^{M} w_m \left(1 - e^{-\frac{\xi}{\tau m}} \right) \right] \]
Attempt with Relaxation

- Required parameter identification
- Simulation time (mecano)
 - Reference ~3hr
 - With relaxation ~126hr
Thank you

The authors kindly acknowledge the support of Flanders Make and Flanders Innovation & Entrepreneurship (VLAIO) with this study, which is part of an ICON project entitled "Virtual Design Platform for Sheet Material Products (VIDESPRO icon)"
References

Limiting Mechanisms: T_g (Math)

$$k_D = \exp\left(\frac{-b}{0.00048(T - T_g) + 0.025}\right)$$

$0.00048(T - T_g) + 0.025 = 0$ when $T - T_g = -52.1^\circ C$

During cooling $T - T_g < -52.1^\circ C$

$$k_D = \exp\left(\frac{-b}{-\varepsilon \approx 0}\right)$$

$\frac{1}{k_i'} = \frac{1}{k_i} + \frac{1}{k_D}$

$= \frac{1}{k_i} + \frac{1}{\infty}$

$= \frac{1}{k_i}$