Showing results for 
Search instead for 
Did you mean: 

Duration of advanced non linear Analysis



I´m doing Analysis with the SOL601 currently and it seems to need very long.

My model has something like 10700 Elements and I´m doing an analysis with 1000 steps, a time increment of 0,001 and 15 increments on each step .... after 13 hours the analysis ended on step 582 with a time of 0,6025 so far , because it cant get the convergence anymore.

Is it normal , that it takes so long ? 

How can I get sure, to avoid convergence errors ? 

Is it advisable to decrease the number of increments on each step or will it influence the results to much ?

Is there maybe a tolerance value which I can regulate in the right way ?

The default solver is "direct sparse" is this the right solver for large displacement analysis ?

I would be very thankful for any answers or tips.



Re: Duration of advanced non linear Analysis

Solution Partner Phenom Solution Partner Phenom
Solution Partner Phenom


Well, without the FEMAP model in hand is quite difficult to see the reason of the lack of convergence, things in general are really complex in nonlinear analysis. Take a look to Advanced Nonlinear manual, read in detail, is the best source of information, quite complete and useful.


Here you are a few recommendations, I suggest to identify sources of nonlinearity and reduce them until solution converges (of course, an initial SOL101 run should be done to see the level of displacements and stress results!!):

• For geometric nonlinearity:

  • Use small strain instead of large strain (LGSTRN).
  • Use small displacement instead of large displacement (LGDISP).

• For material nonlinearity:

  • Extend material curves to avoid element rupture (XTCURVE).

• For load nonlinearity:

  • Use deformation independent loading (LOADOPT).
  • Apply loads more gradually.

• For contact nonlinearity:

  • Add or remove friction.
  • Use small displacement contact instead of large displacement contact (CTDISP).
  • Add contact compliance (CFACTOR1).
  • Increase friction regularization parameter (EPST).
  • Gradually remove initial penetrations (INIPENE/TZPENE).

Regarding loads & boundary conditions, I suggest to use prescribed displacements instead of forces where possible.


The causes of diverging solution could be many, you may have rigid body modes (model is unstable), buckling occurs, contact separates, etc.. In general the remedy is to allow more iterations, use deformation independent loads, or use smaller time steps.


Also, if Automatic Time Stepping failed (ATS scheme used in AUTO INCREMENT=1), then change to the following method in the NXSTRAT Iteration & Convergence Parameters window:

  • Solver ignores any defined time steps and time functions.
  • Solver uses 50 steps of 0.2 seconds (TLANSTP).
  • All loads are scaled from 0 at t=0 to 100% at t=10.
  • MAXITE = 30 (TLAMXIT).
  • ATSSUBD = 64.
  • LSEARCH = 1.
  • MAXDISP = 0.05 * (max model dimension).

Regarding solvers, the DIRECT SPARSE solver is the best, not doubt, your model is not big (10700 elements is nothing!) then not need to switch to another solver.


Best regards,


Blas Molero Hidalgo, Ingeniero Industrial, Director
Blog Femap-NX Nastran:

Re: Duration of advanced non linear Analysis

Siemens Phenom Siemens Phenom
Siemens Phenom

In addition to Blas' suggestions, if you have multiple cores in your machine, in the Analysis Set Manager, go to the "NASTRAN Executive and Solutions Options" and turn on Parallel Processing and enter the number of cores your machine has.


I have dual Xeon processors, 64GB of RAM and my machine is set up without Hyperthreading, I can run your model in under 9 minutes with 12 cores in use. (I think it's the same one that you sent for the post-processing question).




Re: Duration of advanced non linear Analysis


@masherman Yes, it is the same model, but did you change the parameters or did you just run the existing analysis which I created there ? Because that one, which I created have just 100 steps and a increment time of 0,01  with just 5 iterations per step .... for this analysis my computer needs 20 minutes with one core so maybe this could be the reason for your rushing calculation?

Or did you the 1000 Steps with 15 Iterations per step and a increment time of 0,001 seconds ?

Because this would be really impressive ^^


Had you the same doubled set of results like me ?



Thank you for the help so far, I am currently trying to benefit from them Smiley Happy

Re: Duration of advanced non linear Analysis



I tried a dozen of different analyzes , but I dont get the satisfactory results.

The only method which seemed to run nearly to the end was the TLA Method, but it has other problems. First of all I will show the model and explain it a little bit, so the you can imagine what my goal is.

transparent Model.png

You can see, that the model consists of 5 parts. 

The 3 long tendons which lays out of the center from the silicone body and are attached to a rigid disc on the top of the silicone body. The idea is, that I pull one of the tendons , which causes the body to bend like an arc. This model is 120mm long and about 22mm thick in diameter. The tendons have an E of 10N/mm²  and the silicone an E of 1,95 N/mm². This is the result of the TLA method with 2% of a 50N load

Displacement t=2%   F_max=50N.png

And this is the result of the TLA method with 77% of a 50N load

Displacement t=77,28%   F_max=50N.png

As you can see the results do not act like they should ... the tendon is streched all the time from 0-77% but the body is bending just a tiny bit ... the whole force seem to just compress the body.


This is the way the bending should look more like ^


This are the configurations which I could use from your post

Solver Parameter.png

iteration and convergence parameter.png

time function.png


but, I couldnt find the parameters MAXITE = 30 (TLAMXIT). and ATSSUBD = 64. 

where are they and do you think changing them will cause a big difference in the results ?

If it helps, I could send you the .modfem file ... just give me your email. 


I want to figure out which forces are needed to bend the body up to 180° .... with the SOL101 the model just breaks and looks like this already at 30N

SOL101  F=30N.png



Re: Duration of advanced non linear Analysis

Solution Partner Phenom Solution Partner Phenom
Solution Partner Phenom

Dear Nemonekto,

1.- The first action I will do here is meshing with HEX8 elements, avoiding the use of TET10 elements: you will get an immediate benefit, with the same element size the model database will reduce in the number of nodes about 10 times!!. This is very important in nonlinear analysis with contact, the size matter!!.

2.- Next you will make sure to have the same mesh in the tendon & body, avoiding the interference & penetration of both meshes: the solution is to use HEX20 elements, but this increase the model size a lot, or the "trick" is to have exactly the same mesh (node location) in both parts. You need to learn how to mesh with HEX elements, is very important (crucial!!) in advanced nonlinear analysis with contact (SOL601) to use hexaedral elements, the target is HEX20, and better HEX27 (activating ELCV=1 parameter in NXSTRAT).




3.- Regarding the TLA scheme, is the solver who select internally the mentioned parameters, to learn more about it I suggest to read carefully the Advanced Nonlinear manual, you will learn a lot, is a jewel!!.


Best regards,


Blas Molero Hidalgo, Ingeniero Industrial, Director
Blog Femap-NX Nastran:

Re: Duration of advanced non linear Analysis


I have revised the model, so that its more suitable for a homogeneous mesh. It looks now like this.



The mesh of the tendons, the body on the tip have the same orientation and size and the amount of elements is decreased to 3200, so the calculations are going quite fast.

Nevertheless, the TLA-S is giving still the same results (normal TLA does not work) ... it is succesfull , but the results are physically impossible and therefore worthless. I tried it often with the ATS Method but it ends everytime in convergence problems ... I´ve set the iterations per step to the maximum of 999 and this helped alot ... but not enough.

So are you sure that the TLA-method is the right solution for my problem ?





Re: Duration of advanced non linear Analysis


Addition: Everytime I start a analysis the program is showing me this sentence 

"Contact group 1 has 290 initially penetrating contactor nodes".

Shouldnt be there no penetrating contactor nodes, if I meshed it the way you told me ?

Re: Duration of advanced non linear Analysis


Second Addition: Is there a list for all the acronyms which are used in the Advanced Nonlinear manual ? There is no one in the guide and it is very time consuming to search for the meaning or just guessing multiple times ... apart from that, the guide does not explain how to use all the parameters right to get a useful result. There are not even examples for a few different Non-linear analysis ...the only example of a non linear analysis is the Nr. 31 "Surface to Surface Contact - Advanced Nonlinear (SOL 601)" (from femap) but it uses just the standard values. Are there more videos or examples anywhere to understand the non linear analysis ? My project ist time limited and the guide is just not helpful !